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In this paper we investigate the semiclassical mechanics of a system of two quartic oscillators
coupled by a quartic perturbation yq?g3. Our focus is on the evolution of the quantum density of
states from the integrable limit (v = 0) to the strongly coupled regime (v = 15.0). In the integrable
limit, the Berry-Tabor analysis of the semiclassical density of states in terms of rational tori is
appropriate. We extend this analysis to treat the contributions of resonant tori at the boundaries
of physical action space. Computation of the power spectrum of the quantum density of states for
a sequence of v values reveals the evolution of the underlying classical periodic orbit structure. The
influence of several resonant, symmetric isochronous, and tangent bifurcations on the density of
states is identified. Localization of eigenstates in the vicinity of the shortest periodic orbits is also

discussed.

PACS number(s): 05.45.+b, 03.65.Sq, 02.90.+p

I. INTRODUCTION

There has been much recent interest in the classical-
quantum correspondence for nonintegrable systems [1,2].
Semiclassical periodic orbit theory is an essential tool in
such studies [1]. Periodic orbit theory expresses the quan-
tum mechanical density of states or matrix elements of
(sufficiently smooth) operators in terms of the proper-
ties of classical periodic orbits [1,3]. These methods have
been applied in atomic [4,5] and molecular [6,7] physics.

Two degree of freedom systems with homogeneous
quartic potentials have been widely studied [8-17]. Early
classical investigations of the z2y? potential suggested
that the system was completely (harshly) chaotic [8]; sub-
sequent studies have shown the existence of small sta-
ble regions in phase space [13,14]. Wave function lo-
calization or “scarring” in configuration space [10] and
in phase space [12] has been examined and approximate
adiabatic quantization schemes proposed for eigenvalues
[10,16]. A detailed study of coupled quartic oscillators
has been made by Bohigas, Tomsovic, and Ullmo [15].
Among other aspects, these authors have investigated
the relation between classical phase space transport (flux
through partial barriers) and quantum features such as
energy level spacing statistics.

In the present paper we study the classical-quantum
correspondence for a system of two quartic oscillators
with quartic potential coupling. Our approach is com-
plementary to that of Ref. [15], with a focus on appli-
cation of semiclassical periodic orbit theory to the study
of the evolution of the quantum density of states from
the integrable to the strongly coupled limit. For most of
the coupling parameter values studied, our system has a
generic “mixed” phase space structure [1,18]. Particular
emphasis will be given to the manifestations of classi-
cal bifurcations in the quantum spectrum [19,20]. For
important prior work on bifurcations, see [21-23]. The
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issue of wave function localization in the vicinity of peri-
odic orbits [24] is also briefly discussed.

II. THE HAMILTONIAN
We shall investigate the Hamiltonian

H = %pf + %pg +md; + 1295 + vaids- (2.1)
It has been much studied previously [8-16], though usu-
ally in the limit 71,72 — 0 (see, e.g., [10,13]). In order to
lift the degeneracy between the two oscillators, thereby
reducing the symmetry of the model to that of a rectangle
(symmetry group D), we set n; = 1.05 and 7, = 0.95.
We then investigate the classical and quantum dynamics
as < is increased from zero up to a “large” value v = 15.

Because the Hamiltonian (2.1) is homogeneous in the
coordinates {g;}, its classical solutions exhibit the scaling
property [25]. Thus, for each trajectory (po(t),qo(t)) at
energy Fy, there exists a corresponding one at energy E,

(p(7),a(r)), with

p(r) = (Eﬂ) " po(®),

a(r) = (Eﬂo)iqom,

o (ENT

In particular, if a periodic orbit at energy E, has ac-
tion S¢ then the corresponding scaled orbit at any other
positive energy E will have action

(2.2)

S(E) = €So, (2.3)
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(E%) ’. Hence, given 7;, 72, and v, infor-

where ¢

mation on periodic orbits at all energies can be obtained
from an analysis at just one energy. In this work we use
the reference energy Fy = 1.0.

A hybrid Gear algorithm is used for trajectory inte-
gration [26] and a combination of Newton-Raphson and
bisection methods [27] is employed to find periodic orbits.
In all our trajectory calculations energy is conserved to
an accuracy of 10~ 4; quadruple precision is used to com-
pute the stability exponents of the most unstable orbits.

The quantum mechanical energy levels are found nu-
merically by matrix diagonalization using a symmetry
projected (totally symmetric, A;) direct product basis of
quartic oscillator eigenfunctions. The quartic oscillator
eigenfunctions are in turn generated by diagonalization
of the primary mode quartic oscillator Hamiltonians in
one-dimensional harmonic oscillator basis sets, with the
harmonic frequency chosen to minimize the trace of the
Hamiltonian matrix [10]. In Ref. [10] an improvement
in convergence was obtained when the basis set was ro-
tated by 7; because of the lower symmetry of our system,
however, we do not apply this method here. The lowest
1000 energy levels of A; symmetry were obtained over
the range 0 < v < 15.

III. THE INTEGRABLE LIMIT

With the chosen parameters 7; and 72, the system Eq.
(2.1) is only completely integrable for v = 0. Although a

|

p(E) =Y 8(E - H(Iy = (m + )k, Iz = (n2 + 3)R)),

where the Maslov index is 1 for both oscillators [28].
The sum over the lattice of non-negative integer quan-
tum numbers n is transformed to a sum of integrals in
reciprocal M space via the Poisson sum formula to give

(28]

1 —im m
p(E) = 72 Ze (m1+ma)
M

x / / SCEMIS(E _ H(D)dLdL,.  (3.3)
The term in Eq. (3.3) with M = 0 is the Thomas-Fermi
(TF)density of states [cf. Eq. (4.2)]. To facilitate evalua-
tion of the remaining terms in (3.3) by stationary phase,
we use the coordinate system introduced by Berry and
Tabor [28]. Define & to be the distance along the en-
ergy contour from the point in action space I and let the
orthogonal coordinate be £;. We define two normalized
vectors: v, which points in a direction normal to the
energy contour, and v, which points along the energy
contour. We have
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system of two uncoupled quartic oscillators is in princi-
ple trivial, a semiclassical analysis of the density of states
p(FE) exhibits several interesting features that merit dis-
cussion.

For v = 0 the classical phase space is entirely filled
with invariant tori supporting either quasiperiodic tra-
jectories or one-parameter families of periodic orbits. At
the extreme points of phase space lie the two “primary”
oscillator orbits: the ¢ = 1 primary orbit refers to the
periodic orbit in which all the energy is in mode 1, i.e.,
p2 = g2 = 0 for all ¢, and similarly the ¢ = 2 primary
orbit has p; = ¢; = 0 for all time. These orbits exist for
all values of ~.

Berry and Tabor have expressed the semiclassical den-
sity of states for integrable systems in terms of the ratio-
nal (periodic) tori [28]. We now give a brief summary of
their method as applied to our system Eq. (2.1). In the
zero coupling limit, the quartic oscillator Hamiltonian is
separable, i.e.,

_1, 1, 4 4_ I8 I3 3.1
H—§P1+2P2+"71ql+772Q2—011 1 toaxly, (3.1)

4 1
where a; = (f—};)a n? and K is the complete elliptic

integral K = F(%,%) ~ 1.85 [29].

1

wz:gfzg ,‘If'. . .
Using standard Einstein-Brillouin-Keller quantization

[28], the semiclassical density of states p(E) is

Frequencies are

(3.2)
r
(Y L
6[1’ 3[2 (w%+w§)% 1,wW2),
V) QE,_?E = —1—1(w2,—w1), (3.4)
ol,’ 98I, (w2 + w2)?
and
dl = v dé + V”d€1. (35)

Using coordinates {£;}, the nonzero M terms of Eq. (3.3)
become

pM(E): %/eﬁﬂMI(&)dgl/ (lsgig)dgo
8o

=L [ %
r? |w(D)]

Standard stationary phase arguments are now used to
perform this integral [28]. The dominant contributions to
the integral come from the vicinity of £; values satisfying
the condition

(3.6)
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dl dI; dl,

&~ tdgy T dé
Using Eq. (3.4), (3.7) gives the stationarity condition

(3.7)

miwz — MaWy = 0, (3.8)
which is a condition for resonance between the two oscil-
lators.

Expanding M - I({;) about I", the value of I(£;) for
which resonance occurs (where £; = 0), we have

. 1., %1
M- I&G)=M-T'+ (M- 5 +--- . (3.9)
2 0¢?
From (3.4), the second derivatives are
82I 2,7 +w2wl
L= _u, (Wit + wiws) 22) (3.10a)
o1 (@} +w3)
and
27 2, ./ + 2,
L _ _, (Wi +wiws) (3.10b)
ot (@ +wf)
g—‘}’: = §;;w;). Inserting the expansion (3.9) into

Eq. (3.6) gives

1 e21ﬁrim_lv‘
» (D)
B 217
X / d¢; exp{% [(m1w1 + maws)

(a3
Lt et )

2
(w? + w3) 2

pm(E) =

(3.11)

Although the limits of this integration should strictly be
the limits of the energy contour (i.e., where the energy
contour intersects the I; = 0 and I, = 0 axes), we assume

that % is small enough so that we may take & = —oo and
B = +o0o. Note that this assumption is not valid for the
my,; = 0 or me = 0 resonances, as they lie exactly on

the I, = 0 or I; = 0 axes. A special treatment of these
resonances is given below.
Carrying out the integration by stationary phase yields

2 3 wi r  im
p(E) B pTF(E) + ﬁ_s Z e_zﬂ(ml+m2)Am1m2ezh M1 eT,
2

M
(3.12)

where

A = (wf +w3) " (3.13)
T (mawy + maws) (Wiw] + wiw))

and M is summed over all two-dimensional integer vec-
tors with both components positive and nonzero. The
factor of 2 arises because we actually need to sum over
the (—, —) as well as the (+, +) quadrant as the resonance
condition can be satisfied in both of these quadrants.

By substituting the expressions for the frequencies {w}
and their derivatives {w'} into (3.13) and using the scal-
ing relation (2.3), we find that A, m, x Es. Note that
this implies a different scaling of the premultiplying fac-
tor to that obtained in the classically hard chaotic case
(cf. Sec. IV).

As M -I" « E%, we can write (3.12) in terms of the
reduced energy e:

2 —in(mi+m
p(e) = prr(e) + —5 » e mmtme)
h2
M
xA?nlmze%eLﬂM'IgseiT".

(3.14)

In the zero coupling limit, all terms in (3.14) can be cal-
culated analytically. In Fig. 1 we show the Fourier trans-
form of the density of states (times the factor e~ 5) as
obtained by matrix diagonalization compared with the
analytical result of Eq. (3.14). It can be seen that the
positions of the peaks are well predicted, but the ampli-
tudes follow the predicted pattern only approximately.
Inclusion of contributions from complex closed orbits [28]
would presumably improve agreement between numerical
and theoretical results.

We have already mentioned one problem with the sta-
tionary phase evaluation of the contribution to the in-
tegral from the (mq,0) and (0,m3) resonances. A more
fundamental problem arises because the Taylor expan-
sion about the stationary point breaks down for these

resonances. In the case M = (mq,0), the stationarity

condition for the integral (3.6) is ml% = 0. Because
1

% = wy (w} +w?) ?, this implies that w, = 0 and

I, = 0. This in turn means that w) = co and so the
Taylor expansion about the point I, = 0 does not ex-
ist. However, as v; = (1,0) and v = (0,1) for the
(m1,0) resonance, locally {; = I>. Rearranging the orig-
inal Hamiltonian gives

3
4 e 3
(H——azIzg) ! o I HE
S 2 =r1-=2(2 , (3.15
- -2 (5 (3.15)

3
with I? = (%) *. We now assume that A is sufficiently

I]_=

(e
small that the dominant contribution to (3.6) comes from
the region close to the stationary point and that out-
side the range I, < I? the oscillations in the integrand
quickly cancel. We can then expand (3.15) using the bi-
nomial expansion to give

4
3 |a I\?3
fl=’f{1‘z[a§(f_§)]
492
_3 e (BN
32 a1 I? ’

Inserting the first two terms of this expression into (3.6),
we obtain

(3.16)
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FIG. 1. Comparison of the analytical
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E)= —e a* 2 _ [ 4r T\ 7
ow(B) = e F iy [ dtae !
(3.17)

where the upper limit for the integral has been taken to
be infinity. Equation (3.17) can be transformed to

3
1 2mimy19 3 3ap e 0l
R 13 . I74
i 2fw(D)] (m’””‘) :

X / dz—e %,
0 T4

where the integral over z is independent of % (and also
any other parameter of the Hamiltonian) and finite. Thus
the contribution to the density of states from resonances
of the form (m1,0) [and similarly (0, m2)] goes as E™4 for

pm(E) =

(3.18)

Relative Intensity
o
)]

0.0
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FIG. 2. Power spectrum of the density of states (with re-
spect to the reduced energy €) for the first 200 (dot-dashed
line), 500 (dashed line), and 1000 levels (solid line), at zero
coupling. Periodic orbit half actions are 0.39 (1:0 resonant
orbit), 0.40 (0:1 resonant orbit), and 0.46 (1:1 orbit).
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tra of the quantum density of states (Fourier
transform with respect to the reduced energy
€) for v+ = 0. Units of intensity are arbi-
trary; the height of the largest peak is scaled
to unity in both plots.

4.0

small A, whereas the contributions from resonances with
both integers nonzero go as A=3. As we move into the
small £ regime, for instance, by increasing the energy, the
relative magnitude of the contribution of the (my,0) and
(0,m2) terms should therefore decrease. This result is
illustrated in Fig. 2, which shows the relative intensity of
peaks in the Fourier transform of the numerical density
of states at the actions of the 1:0, 0:1 (around S = 0.38),
and 1:1 (around S = 0.46) resonant periodic orbits for the
first 200, 500, and 1000 states. As the number of states
is increased, the resolution of peak actions improves, but
the relative importance of the 1:0 and 0:1 peaks decreases
as the effective value of % decreases.

It is interesting to note that the %A~ 3 dependence of
the (m1,0) and (0,m2) terms is intermediate between
that of the contribution from real closed orbits with both
integers nonzero (A~ %) and that of complez closed orbits

(A1) [28].

IV. THE STRONG COUPLING LIMIT

In the limit v — oo (the z2y? potential [10]), the clas-
sical coupled quartic system is almost, but not quite,
entirely chaotic; certain stable periodic orbits have been
found [13] in this limit, but the size of the regular re-
gion about them is very small. As v becomes larger,
calculation of quantum eigenenergies via matrix diago-
nalization becomes difficult [10] and so we truncate our
investigation at the “large” value v = 15. At this point
the classical dynamics appears to be very largely chaotic
(as determined via the Poincaré section), but certain sta-
ble periodic orbits remain. In the hard chaotic limit, the
semiclassical density of states is expressed in terms of the
properties of isolated unstable classical periodic orbits via
the Gutzwiller trace formula [1]

p(E) = p(E) + p>*(E), (4.1)

where p(FE), the Thomas-Fermi term, is [1]
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A(E) = Gagys [ dpdas(E-Hp.@),  (42)

and p°*¢(E) involves a sum over primitive periodic orbits
p and their repetitions:

PP(E) ="

p n=1Th

o203

From Eq. (2.3), it can be seen that the Fourier trans-
form of the density of states with respect to the reduced
energy € provides information on the actions of the clas-
sical periodic orbits contributing to the density of states
via (4.3). The stability or monodronomy matrix M, is
independent of energy, as is the index v, so that the
energy dependence of the premultiplying term resides in
that of the classical period T,(E) = Tp(E = 1)E~ 4. The
computed density of states is therefore multiplied by Ei
before Fourier transforming. Because the quantum den-
sity of states is available only over a finite energy range,
we also multiply by a Blackman-Harris windowing func-
tion to reduce “ringing” around peaks [30].

Equation (4.3) gives an expression for the density of
states including states of all symmetries in the group D,.
However, because we shall only investigate the totally
symmetric (A;) states, the appropriate symmetry pro-
jected form of the density of states must be used [10,31].
Consider the usual formula for the Green function in
terms of the quantum eigenstates |¢;) [1]:

G(q",q';E) — Z ](é_)¢§(q )

i=0 i

T,(E)
[Det(My — 1)]

(4.3)

(4.4)

The definition of an analogous symmetry projected Green
function is [10]

GA1 (q",q';E) — = ZG(q",F(q');E) (4.53‘)

1 1 "y g% ’
(4.5b)

where the sum is over all symmetry operations I' under
which the Hamiltonian is invariant [i.e., the identity, the
two reflections Iy, (p1, 41, P2,92) = (—P1, =41, P2,q2) and
Paz (plaqlap27 qZ) = (pl’ q1, —P2; —qZ)v and the rotation
e, (P1,91,P2,92) = (—P1,—q1, —P2,—qz2)]. Only eigen-
states that are themselves of A; symmetry will contribute
to this symmetrized Green function.

In taking the trace of (4.4) in the coordinate repre-
sentation, the stationary phase approximation leads us
to consider only those points q such that S(q, q; E), the
action of a closed orbit from q — q, is stationary with
respect to changes dq. Hence

as _ as s
aq aqﬁnal qfinel=q 6qinitial qinitisl—q
— pﬁnal _ pinitial -0 (46)

establishing that only periodic orbits need be considered.
Similarly, in taking the trace of (4.5a) the stationarity
condition selects out points q where

as  as , 05
dq 3qﬁ“a1 qfinel=T'(q) aqinitial qinitisal —q
— F(pﬁnal) _ pinitial = 0. (47)

This means that only trajectories connecting (q, p) with
a symmetry related point (I'(q),'(p)) contribute to the
symmetry projected the density of states. Such trajecto-
ries comprise segments of periodic orbits in the full con-
figuration space [they do not correspond to the complete
periodic orbit unless I'(q) = q]; equivalently, these tra-
jectories are periodic orbits in the fundamental domain
[31]. A given periodic orbit therefore makes an oscilla-
tory contribution to the density of states with the action
value determined by its symmetry properties as follows
(cf. Fig. 3).

(a) Self-retracing orbits with full A1 symmetry [Fig.
3(a)]. The only orbits of this form are the two primary
oscillator periodic orbits (¢; = 0, ¢ = 1,2, respectively).
In both cases, one of the reflections maps a point on the
orbit onto a point halfway around the periodic orbit and
the other maps each point on the orbit onto itself. Peaks
in the Fourier transform spaced at half the action of the
primary oscillator orbits are expected.

(b) Self-retracing orbits with one symmetry [e.g., rota-
tion by m as in Fig. 3(b)]. In this case there is a sym-
metry operation that maps any point q on the periodic
orbit onto the point halfway around that orbit. Hence, in
addition to peaks in the Fourier transform at multiples of
the full action of the periodic orbit, peaks at half integer
multiples of the orbit action are expected.

(¢) (Self-retracing orbits with no other symmetries
[Fig. 3(c)]. These orbits give rise to peaks in the power
spectrum of the A; density of states at multiples of the
full action only because there is no symmetry operation
that maps a point on the periodic orbit to another on
that orbit, except the identity. [Note that our quartic
potential has n; # 72, so that the orbit in Fig. 3(c) is
not symmetric with respect to reflection in the diagonal
a1 = q2.]

(d) Non-self-retracing orbits with full Ay symmetry
[Fig. 8(d)]. In this case, there is a symmetry operation
that maps all q on the periodic orbit onto the correspond-
ing point half way around the orbit. Thus there will be
peaks in the Fourier transformed A; density of states at
half multiples of the action.

(e) Non-self-retracing orbits with one symmetry (e.g.,
one rotation) [Fig. 3(e)]. In this case the action along the
periodic orbit from q to I'(q), where I' is the reflection
under which the orbit is invariant, will vary along the
orbit. This means that the only stationary contribution
to g4 (E) comes from the full action around the orbit
and so these orbits will only contribute to the Fourier
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FIG. 3. Periodic orbits of the
six symmetry types discussed
in the text. Note that the
potential is not symmetric un-
der reflection through the line
q1 = q2.
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transform of the A; density of states with the full action.
(f) Non-self-retracing orbits with no symmetry [Fig.
3(f)]- These orbits have no symmetry related pairs of
points q and I'(q) apart from I' = I and so the only
contribution to g4 (E) is at the full action S(q,q).

V. TRANSITION FROM THE CLASSICALLY
REGULAR REGIME TO THE CLASSICALLY
CHAOTIC REGIME

A. Classical mechanics

The evolution of the phase space structure of the sys-
tem (2.1) with changes in the coupling parameter v is
illustrated in Fig. 4, which shows Poincaré sections (sec-
tioning condition p2 = 0, p2 > 0) for several values of +.
For each value of , we propagate the stable and unsta-
ble manifolds [18] of any of the following periodic orbits
that are unstable: the two primary oscillator modes (of
these, the ¢ = 2 mode intersects the Poincaré section at
p1 = q1 = 0 for all values of v, whereas the « = 1 mode,
having p2 = 0 along its length, lies along the energy
boundary of the Poincaré section, leading to an unusual
form for the stable and unstable manifolds), the diagonal
orbits, and the circular orbits. Note that the diagonal
orbits always lie on the symmetry line p; = 0 and the
circular orbits always lie on the line ¢; = 0.

For the zero coupling, integrable case (not illustrated),
the entire Poincaré section is filled with invariant curves
corresponding to invariant tori surrounding the ¢ = 2 pri-
mary orbit (at p; = ¢1 = 0). Among these tori are the
rational tori covered by one-parameter families of peri-
odic orbits. The lowest-order rational torus corresponds
to the 1:1 resonance and both the diagonal and circular
orbits lie on this torus.

Upon addition of a small nonintegrable perturbation
(v # 0), the resonant tori will in general break up into
pairs of stable and unstable orbits [18]. In the case of the
1:1 resonant torus the diagonal orbits become unstable
and the circular orbits stable. Figure 4 shows that, as
the regular regions around the circular orbits grow in size

%\3

with increasing v, the regular regions around the primary

orbits shrink.

As the value of v is increased towards v = 27, = 1.9,
the diagonal orbits move in towards the ¢ = 2 pri-
mary orbit dragging their manifolds with them. At
v = 1.9 the diagonal orbits merge in an inverse sym-

metric isochronous bifurcation with the ¢ = 2 primary
orbit [23,32], which then becomes unstable. In the range
27, < 7y < 2m; = 2.1 the phase space is largely filled with
tori and broken tori surrounding the circular orbits, with
the remaining volume being filled by tori and broken tori
around the ¢ = 1 primary orbit.

At v = 2m; = 2.1, the diagonal orbits reappear by
splitting off from the stable ¢ = 1 primary mode, which
then becomes unstable. In the range 2n; < v < 672 both
primary orbits are unstable. Note that, because the: =1
primary orbit is actually located on the energy boundary
of the Poincaré section, the stable and unstable manifolds
of this orbit are asymptotic to the boundary. As 7 is
increased through this range, the volume of phase space
occupied by the regular regions around the circular orbits
decreases at the expense of the regular regions around the
diagonal orbits.

At v = 67, = 5.7 the circular orbits merge with the
¢ = 2 primary orbit as that orbit becomes stable again.
In the range 672 < v < 67, the phase space is largely
filled by tori surrounding the diagonal orbits with the
remaining volume being filled by tori about the i = 2
primary orbit.

For v > 6n; = 6.3, both the diagonal and the circular
orbits are unstable. Increasing v further causes the ar-
eas of the stochastic regions about each orbit to increase
until they overlap and global chaos occurs. As found by
Dahlqvist et al. [13], the phase space for system (2.1) is
never entirely chaotic, even in the limit v — oco. Analyt-
ical expressions for the trace of the monodromy matrix
for straight line periodic orbits in homogeneous poten-
tials (i.e., primary and diagonal orbits) have been given
by Yoshida [33], who proved that the primary orbits oscil-
late between stability and instability as v — oo. Primary
orbit ¢ changes between stability and instability (or vice
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1.10 1.10 1.10
q; o.00| q; 0.004 q; 0.004
-1.10 , -1.10 , -1.10 .
-1.50 0.00 150 by 150 0.00 150 -1.50 0.00 1.50
(@) p, (b) P, © P,
1.10 1.10 1.10
q, 0.004 qd, 0.00- q; o.0o-{H
-1.10 : -1.10 . -1.10 .
e 0.00 1.50 -1.50 0.00 150 5 -1.50 0.00 150
€
(d) P, (e D, ( P,

FIG. 4. Classical Poincaré sections (sectioning condition p2; = 0) for different values of . Invariant stable and unstable

manifolds are shown for the primary, circular, and diagonal periodic orbits, when they are unstable.

Symbols for orbits

(irrespective of stability): e (i = 2 primary mode), o (circular orbits), and x (diagonal orbits). (a) v = 1.0. (b) v = 2.0. (c)

v =3.0. (d) vy =5.0. (e) vy =6.0. (f) vy = 7.0.

versa) at every point v = n(n + 1)n;. We have described
the first two of these transitions above. The third such
transition also occurs in the range of v studied, with the
simultaneous appearance of 2:1 resonant periodic orbits.

B. The quantum density of states

In the preceding subsection we briefly described the
changes in the large-scale classical phase space structure
of system (2.1) as the coupling parameter is increased.
In Fig. 5 we present a plot of the evolution of the power
spectrum of the density of states (Fourier transform with
respect to the reduced energy €) as a function of . The
density of states is calculated by matrix diagonalization
at intervals of Ay = 0.1 and the resulting power spectra
are plotted. Each power spectrum has been shifted ver-
tically by an amount proportional to . Also plotted in
Fig. 5 are the actions of various classical periodic orbits,
again as a function of . Figure 5 reveals very strikingly
the close connection between the classical and quantum
dynamics over a range of v values.

Semiclassical expressions for the density of states were
discussed above for both the integrable and hard chaotic

limits [1] and we now investigate the transition between
these two limits. Figure 5 shows very clearly the influ-
ence of the classical periodic orbit structure on the quan-
tum density of states over the whole coupling parameter
range studied. In particular, periodic orbit bifurcations
and inverse bifurcations are associated with splittings
and mergings of peaks in the power spectrum. Periodic
orbit bifurcation sequences in classical Hamiltonian sys-
tems are relatively well understood (for two degrees of
freedom, at least) [18,21]. An important point is that
the primitive semiclassical expression for the density of
states, Eq. (4.3), has divergent contributions from bifur-
cating periodic orbits, when the associated stability ma-
trix M, or powers thereof has unit eigenvalues [1,19,20].
Ozorio de Almeida and Hannay [20] have given general
uniform semiclassical expressions for the contribution of
bifurcating periodic orbits, based on the generating func-
tion describing the structure of the Poincaré section in
the vicinity of the periodic orbit [20]. We have previ-
ously applied this method to obtain an analytical form
for the semiclassical density of states in the vicinity of
a pitchfork bifurcation of the primary oscillator modes
in the examples of higher-order resonant bifurcations, for
which no analytic form for the parameters in the generat-
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ing function is available, and show how they are manifest
in the quantum density of states.

C. Circular orbits

We now investigate the effect of the breakup of reso-
nant tori upon the quantum density of states by following
periodic orbits that in the limit of zero coupling lie on the
1:1 resonant torus. There are four such orbits. The two
diagonal orbits, which satisfy the condition ¢; = ag: at
all times, were described briefly in [32] and are discussed
further below. The initially stable “circular” orbits form
simple closed loops enclosing the origin in configuration
space; cf. Fig. 6. (For v = 2m; = 27, these orbits are
exact circles.) The circular orbits exist up to the param-
eter value v = 67, at which point they merge with the
1 = 2 primary oscillator mode. At v = 67y, the circular
orbits reemerge from the ¢ = 1 primary oscillator mode as
unstable orbits whose instability increases with . This
variation of phase space structure with coupling param-
eter is in certain respects unusual, from the uncoupled
integrable case v = 0 through the value vy = 2.0, where
the system is nearly separable in terms of radial and an-
gular coordinates, to the point v = 6.0, where the system
is almost separable in diagonal coordinates.

As v is increased from zero, the eigenvalues of the mon-
odromy matrix for the circular orbits move around the
unit circle towards, but never actually reach, —1 (see Fig.
7). At the same time, the volume of the stable region
surrounding the circular orbits increases. As the rota-
tional angle passes through rational multiples of 27, i.e.,
A = et%™ T with m and n integers, one or two stable-
unstable pairs of higher-order periodic orbits are born.
At such places the determinant of |[M™ — 1| for the nth
repetition of the periodic orbit in Eq. (4.3) becomes zero
and the stationary phase approximation breaks down.

FIG. 5. Power spectrum of
the density of states plotted as
a function of the coupling pa-
rameter . Superimposed on
this plot are traces of the ac-
tion or half action (depend-
ing upon symmetry) of vari-
ous classical periodic orbits at
7 = Eo = 1.0, in units of A.

Following Ozorio de Almeida and Hannay [20], we have
given a uniform semiclassical treatment of the density of
states through a symmetric pitchfork bifurcation of the
primary oscillator modes [32], a case for which an analyt-
ical expression for the corresponding generating function
S(d’, q) is available. In the vicinity of a general resonant
bifurcation, the generating function S(q' = q,q) is sta-
tionary precisely on the periodic orbits, but the periodic
orbits are not isolated on the scale of %. Instead of using
the stationary phase approximation for each of the peri-
odic orbits individually [that is, assuming a quadratic
expansion of S(q,q) around each orbit], we must use
a higher-order expansion, for example, a quartic form

v=0.05 % y=2.00 %

Y=6.40

~—_

q2
L AR
/

FIG. 6. Evolution of the circular orbits as 7 is varied
(E = 1.0). At v = 5.7 the circular orbits merge with the
i = 2 primary periodic orbit and emerge from the 7 = 1 pri-
mary orbit at v = 6.3.
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FIG. 7. Rotation angle about the (stable) circular orbit as
a function of the coupling parameter ~y.

[23,32]. In [32] we were able to derive analytic forms for
the coefficients in the symmetric quartic expansion about
the central periodic orbit, but in the general case this is
not possible. Nevertheless, the results of [32] are useful
in that they enable us to understand qualitatively the
semiclassical manifestations of the different types of bi-
furcation leading to the appearance of resonant periodic
orbits.

As an example, consider the formation of the 5:12 res-
onant periodic orbits about the circular orbit (Fig. 8). In
the 5 times they loop the origin before closing, each of
these resonant periodic orbits undergoes 12 radial oscil-
lations. The 5:12 orbits emerge from the circular orbit at
v = 0.98 and disappear by merging with it at v = 3.34
(cf. the nonmonotonic behavior of the winding number in
Fig. 7). There are four of these non-self-retracing orbits,
each of which has the full D, symmetry of the Hamilto-
nian and so gives a peak in the Fourier transform of the
density of states at half the full action. The actions of the
5:12 orbits are only slightly different from the action of
the fifth repetition of the circular orbit itself, the differ-
ence being sufficiently small that separate peaks are not
resolved in our Fourier transform computed with a finite
number of energy levels. In Fig. 9 we show the Fourier
transform of the density of states in the vicinity of the
half action of the 5:12 orbits. The half action of the 5:12
resonant periodic orbits is indicated as well as 2.5 times
the action of the circular orbit. While the multifurcation

y=200 %

FIG. 8. The 5:12 resonant periodic orbit at v = 2.0.

FIG. 9. Power spectrum of the density of states as a func-
tion of 4. Superimposed upon the peaks are traces at (a)
five times the half action of the circular orbits and (b) the
half actions of the 5:12 resonant periodic orbit in Fig. 8 (in
units of A). Also shown (projected onto the back wall) are the
peak heights at the actions of the periodic orbits. Note that
the action values are very similar. The bifurcation leading to
the emergence of the 5:12 periodic orbits occurs at v = 0.98
and the bifurcation leading to their disappearance occurs at
4 = 3.34.

leading to the appearance of the resonant orbits is cer-
tainly manifest as an increase in the peak height in the
vicinity of the corresponding classical parameter value,
the maximum peak height is not, however, found at the
bifurcation point (v = 3.34), but rather on the side of
the bifurcation where multiple periodic orbits exist (cf.
[32)).

Although other higher-order multifurcations occur
around the circular orbits, the new orbits have such high
actions that the corresponding peaks in the Fourier trans-
formed density of states overlap with the peaks corre-
sponding to multiple repetitions of lower action periodic
orbits. This makes identification of the effect of the mul-
tifurcation difficult. We have, however, observed signifi-
cant enhancement of intensity at actions near the repeti-
tions of the circular orbit for parameter values where the
corresponding higher-order periodic orbit emerges.

As stated above, the eigenvalues of the monodromy
matrix of the circular orbit do not quite reach —1 before
it merges with the ¢ = 2 primary mode at v = 672, so
that no period-doubling bifurcation occurs. Accordingly,
we do not expect enhancement of peaks at low-order rep-
etitions of the circular periodic action. This is indeed the
case for the first, second, and third repetitions of the half
action, but the fourth repetition is enhanced (Fig. 10).
The reason is that the eigenvalues of the monodromy ma-
trix for the periodic orbit come close to —1 for v ~ 2.0
and so the determinant in (4.3) becomes small. If the
eigenvalues actually reached —1, a period-doubling bi-
furcation would occur [18].

At v = 2.0 the Hamiltonian (2.1) is almost separa-
ble; for v = 2m; = 27, it is separable in terms of polar
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FIG. 10. Peak height in the power spectrum of the quan-
tum density of states at action values corresponding to the
first four repetitions of the half action of the circular orbits:
first (solid), second (long dashed), third (short dashed), and
fourth (chain). Note the enhancement of the intensity at the
fourth repetition at v ~ 2.0. Also note the small peaks close
to the bifurcation point v = 5.7. These correspond to the
“supernumerary rainbow peaks” briefly mentioned in [32].

coordinates and torus quantization is again appropriate.
However, with our chosen parameters, although most of
the phase space is filled with tori around the circular or-
bits, there is a small region of phase space around the
one remaining stable primary oscillator mode; associated
peaks appear in the power spectrum of the density of
states.

D. Diagonal orbits

The “diagonal” orbits were described in [32]. These
orbits, which also lie originally on the 1:1 resonant torus,
rotate in configuration space as +y is increased away from
zero, until at v = 27, they merge with the ¢ = 2 primary
periodic orbit. In [32] we described a uniform semiclassi-
cal analysis of the associated inverse pitchfork bifurcation
at v = 272. Another bifurcation at v = 27, leads to the
reemergence of the diagonal periodic orbits out of the
1 = 1 primary periodic orbit.

In the range 0 < v < 27, the diagonal orbits are un-
stable, but above v = 27, they are stable, leading to the
possibility of resonant and period multiplying bifurca-
tions (described below). First, however, we consider the
pitchfork bifurcation that occurs when the eigenvalues of
the diagonal orbits again reach +1 (at v ~ 6.0). The di-
agonal orbits become unstable with the production of two
new stable periodic orbits of the same period. However,
whereas the diagonal orbits do possess one symmetry —
they are invariant with respect to a rotation by 7 about
the origin — the new orbits possess no symmetries. Ex-
cept for a small range of v, where they are unstable with
reflection, these new orbits are stable up to v ~ 13.89 at
which point another pitchfork bifurcation occurs. When-

ever the newly produced orbits change from being sta-
ble to unstable, new periodic orbits emerge, either of the
same period or of double the period according to the sign
of the monodromy eigenvalues at the transition. We have
followed several of these higher-order periodic orbits as a
function of v (Fig. 11).

The power spectrum of the density of states is shown
in Figs. 12 and 13. In the vicinity of action values corre-
sponding to the first occurrence of the diagonal orbit half
action (Fig. 12), the peak height monotonically decreases
as v increases. At the full action, however (Fig. 13), the
pitchfork bifurcation at v ~ 6.0 is manifest as an increase
in peak intensity. Above the bifurcation, the larger peaks
are associated with the stable lower symmetry orbits pro-
duced by the bifurcation, with the diagonal orbits only
giving rise to a small peak. Note that, as before, the
maximum intensity is not at the point of bifurcation but
rather towards the multiple orbit side. Further away from
the bifurcation, the intensity corresponding to these sta-
ble orbits again increases, up to the next pitchfork bifur-
cation.

At v ~ 4.80 the eigenvalues of the monodromy ma-
trix of the diagonal orbits pass through e*27#/3 and
two pairs of stable-unstable period-tripled orbits are pro-
duced. The effect on the Fourier transformed density of
states is apparent at action values around the half ac-
tion of these orbits (they have rotational symmetry and
so contribute at their half action) with an increase in
intensity above the bifurcation point (Fig. 14).

At v ~ 3.83 the eigenvalues of the diagonal orbit sta-

<N

FIG. 11. Descendents of the diagonal orbits. All orbits are
illustrated at v = 15.0. (a) The orbit resulting from the bi-
furcation at v ~ 6.0. (b) and (c) Orbits emerging from orbit
(a) as it briefly becomes unstable with reflection: orbit (b)
is born at v ~ 7.7, orbit (c) at v ~ 8.3 (note that these are
different orbits because the potential has rectangular symme-
try only). (d) The orbit born from (a) at v ~ 13.9. In all
these examples we show just one of several symmetry related
orbits.
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FIG. 12. Power spectrum of the density of states in the
vicinity of the half action of the diagonal orbits. Note the
monotonic decay of peak height with increasing v except for
the small supernumerary rainbow peak close to the bifurca-
tion point v = 2.1. The peaks at actions slightly higher than
the diagonal orbits are due to the primary periodic orbits.
Actions are in units of A.

bility matrix reach —1 and we observe a period doubling
resulting, because of the symmetry, in two unstable self-
retracing and two stable non-self-retracing orbits being
formed from each diagonal orbit (thereby conserving in-
dex). None of the new orbits has any of the spatial sym-
metries of the Hamiltonian. The diagonal orbits remain
stable as the rotation angle increases through w. The
quantum manifestation of this period-doubling bifurca-
tion is shown in Fig. 15 (cf. Ref. [32]). The maximum
peak intensity is again on the multiple periodic orbit side
of the bifurcation and the peak for the higher action pe-
riodic orbit has greater intensity than that for the rep-

0506S

FIG. 13. Power spectrum of the density of states in the
vicinity of the full action of the diagonal orbits. The pitchfork
bifurcation leading to the lower symmetry orbits occurs at
v =~ 6.0. Note that the larger peaks for vy greater than this
value are associated with the stable lower symmetry orbits.
Actions are in units of .

I

2,

FIG. 14. Power spectrum of the density of states in the
vicinity of three times the half action of the diagonal orbits.
The multifurcation of the classical periodic orbit occurs at
v = 4.80. The larger amplitude in the power spectrum is
associated with higher action period-three orbits. Actions
are in units of 4.

etition of the shorter orbit. In Fig. 15, the effect of the
pitchfork bifurcation illustrated in Fig. 13 is apparent at
its second repetition.

E. Saddle-center bifurcations

Mao and Delos have described the creation of “exotic”
orbits at saddle-center (tangent) bifurcations [21]. A
semiclassical theory for the effect of such bifurcations on
the density of states was given by by Kus et al. [34], who
introduced the notion of “ghost” periodic orbits to ex-
plain the appearance of peaks in the Fourier transformed

1.6 _9.0

1.2

e
'lll"

mm‘\

1.2 S

FIG. 15. Power spectrum of the density of states in the
vicinity of four times the half action of the diagonal or-
bits. The bifurcation leading to the appearance of the pe-
riod-doubled orbits is at v ~ 3.8. Also appearing on this
figure (at v ~ 6.0) is the repetition of the pitchfork bifurca-
tion leading to the emergence of the lower symmetry period
one orbits. Actions are in units of .
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quantum density of states at parameter values for which
there was no real classical periodic orbit. It is not pos-
sible to find orbits produced by tangent bifurcations by
systematically following branches of the bifurcation tree
from known periodic orbits; rather, because such orbits
“appear out of nowhere” (though in pairs), a thorough
search at a particular parameter value is necessary to re-
veal one of these orbits. Once such an orbit is found,
it can be followed to smaller values of the coupling pa-
rameter until a bifurcation is reached. In the case that
the bifurcation is a saddle-center bifurcation, the comple-
mentary periodic orbit can then be followed by increasing
the coupling parameter. It is important to note that, be-
cause of the existence of saddle-center bifurcations it is
not possible to guarantee that all periodic orbits with
actions below a certain value, say, have been found at a
particular v value.

In a small number of cases, we observe sets of peaks in
the Fourier transformed density of states at action val-
ues that have no apparent relation to the actions of other,
known, periodic orbits. In those cases we have investi-
gated, we find that such peaks are associated with a pair
of periodic orbits produced by a saddle-center bifurca-
tion. One pair of such orbits is shown in Fig. 16. The
two periodic orbits are self-retracing with one symmetry
[the reflection (p1,¢1) — (—p1, —q1)], so there is a peak in
the power spectrum at half the classical action (Fig. 17).
It is conceivable that there are other periodic orbits hav-
ing nearly the same action that we have not found; the
match between the position of the peak and the action of
the orbits in Fig. 17 is nevertheless quite convincing. As
observed in [32], the maximum peak height as a function
of coupling parameter occurs not at the bifurcation value
itself but towards the side where the real periodic orbits
exist. Although a uniform semiclassical treatment of the
density of states in terms of Airy functions would be ap-
propriate in this case [34], neither the actions nor the
positions in the Poincaré section are known analytically.

It should be pointed out that, although saddle-center
bifurcations are not uncommon in the classical dynamics,
it is difficult to unambiguously identify their manifesta-
tions in the quantum system. In the range of v values
where saddle-center bifurcations occur, there are many
other classical periodic orbits with comparable actions
and the contributions of these other orbits to the density
of states can obscure the effect of the ghost orbits.

q2
. % .

FIG. 16. Pair of periodic orbits appearing at a sad-
dle-center bifurcation at coupling parameter vy ~ 12.8.

9,
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FIG. 17. Manifestation of a classical saddle-center bifurca-
tion in the power spectrum of the quantum density of states.
The half actions of the relevant classical periodic orbits are
also shown (in units of ). The saddle-center bifurcation oc-
curs at v ~ 12.8, below which point the two relevant periodic
orbits cease to exist.

F. General comments

We have illustrated the effect of various classical bifur-
cation phenomena upon the quantum density of states.
While it is neither possible nor useful to examine every
such bifurcation, we have followed several periodic or-
bits from their formation through to the upper limit of v
we are able to study quantum mechanically. Many fea-
tures of the power spectrum of the quantum density of
states can be understood in terms of individual classical
periodic orbits or small sets thereof, although in many
cases the existence of a number of periodic orbits close
in action prevents unambiguous assignment. Moreover,
because of the occurrence of saddle-center bifurcations, it
is not possible to guarantee that all periodic orbits with
actions less than a certain value have been found.

VI. EIGENSTATE LOCALIZATION AND
PERIODIC ORBITS

Thus far our discussion of system (2.1) has centered on
the quantum density of states. There is, however, also
considerable current interest in the properties of eigen-
functions of nonintegrable systems [1]. The localization
of eigenfunctions in the vicinity of periodic orbits in both
configuration space [24] and in phase space [35] has at-
tracted much attention.

We do not give a systematic survey of the eigenstates
of system (2.1) in the present paper. In this section we
make a number of observations concerning the apparent
influence of the most important short (primary, diago-
nal, and circular) periodic orbits on certain subsets of
eigenstates. A discussion of “smoothed” eigenstates [36]
is reserved for a later paper.

In Fig. 18 we show the variation of eigenvalues (reduced
energies) with v (7, = 1.05 and 7, = 0.95). Clearly
present in the correlation diagram are “diabatic states”
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FIG. 18. Correlation diagram showing A; symmetry eigen-
values as a function of coupling parameter . Dimensionless
reduced energies € = (E/Eo)%/* are plotted.

i.e., states whose energies vary smoothly with v, with
only local avoided crossings perturbing them [37].
Notable among the diabatic states are sequences of
nearly horizontal lines at large « values. These dia-
batic curves are associated with states that are localized
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FIG. 19. Reduced energy of the eigenstates localized along
the ¢ = 2 primary periodic orbit as a function of quantum
number and coupling parameter.
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along the primary mode periodic orbits. Sequences of
such states can be identified corresponding to successive
excitation of quanta along the primary modes and the
energies of such states are well approximated by sim-
ple one-dimensional Bohr-Sommerfield quantization con-
ditions [11]. In Fig. 19 we show the reduced energies of
states localized along the ¢ = 2 primary periodic orbit
as a function of coupling parameter and quantum num-
ber ny. The relation between reduced energy and quan-
tum number is approximately linear, as follows from sim-
ple one-dimensional semiclassical quantization [11]. The
state energies are moreover approximately independent
of the coupling parameter in the range of v considered.
In Fig. 20 we show a sequence of configuration space plots
of states localized along the i = 2 primary mode for sev-
eral vy values, each at energies corresponding to 20 quanta
along the primary mode and zero quanta transverse. De-
spite the accuracy of the one-dimensional quantization
for computation of energies, the eigenstates themselves
are subject to the influence of periodic orbits other than
the primary orbits. In the last eigenstate of Fig. 20 there
is clearly some influence of the “figure eight” orbit also
marked.

By following a different diabatic stat state, we can ob-
serve the effect of the pitchfork bifurcation of the clas-
sical diagonal periodic orbit on the eigenfunctions. In
Fig. 21 we show the energy level correlation diagram in
the vicinity of the diabatic curve associated with states
having 22 nodes along the diagonal orbit and none across
it. Because of the symmetry, eigenstates will be scarred
by both diagonal orbits and some care is necessary when
counting nodes. Configuration space densities and quan-

v=9.0
No.50 E=79.79

(a) Y=6.0 (b)

© v=12.0 d)
No. 48 E =80.55

v=15.0
No.46 E=28148

FIG. 20. Configuration space plots of eigenstates localized
along i=2 primary orbit, with nz = 20 quanta along the orbit.
(a) v = 6.0. (b) v =9.0. (c) v = 12.0. (d) v = 15.0.
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FIG. 21. Portion of the energy versus v correlation dia-
gram. The dots indicate the states shown in Figs. 22 and 23.
Dimensionless reduced energies € = (E/Eo)*/* are plotted.

tum surfaces of section (Husimi representation [38]) are
shown for the indicated eigenstates in Figs. 22 and 23,
respectively. The locations of relevant classical periodic
orbits are marked in Fig. 23. At v = 6.0 the system
is almost separable in terms of diagonal coordinates (at
v = 61, = 67, the system is exactly separable in these
coordinates) and it is easy to recognize eigenstates lo-
calized along the diagonal periodic orbit. For a value
of v ~ 6.007 the diagonal orbit becomes unstable at a
pitchfork bifurcation (as discussed above). The influence
of the new stable orbits on the eigenstate at v = 9.0
is clear from the spreading of the state in configuration
space transverse to the diagonal orbit. The Husimi repre-
sentation also reveals scarring of the phase space density
by the new stable orbits. At v = 12.0 the diabatic state
is involved in an avoided crossing. However, scarring by
descendents of the diagonal orbit is still apparent. The ef-
fect of the avoided crossing is manifest in the Husimi rep-
resentation in the appearance of significant phase space
density about the circular periodic orbit. (The circular
orbit intersects the section at ¢; = 0, p; = +1.356.) A
plot of the other state involved in this avoided crossing
(Fig. 24) shows it to be dominated by the circular orbit,
as expected. At vy ~ 13.8 the new low symmetry or-
bits become unstable with the simultaneous appearance
of two new stable orbits. All these orbits are marked on

o) ¥Y=9.0
No.93 E=122.11

©  y=120 @  y=150
No.95 E=130.45 No.97 E=136.94

FIG. 22. Configuration space densities for eigenstates lo-
calized along the diagonal orbits with n = 22 quanta excited
along the orbit. The states shown are v = 6.0, state 87;
v = 9.0, state 93; v = 12.0, state 95; and v = 15.0, state 96
(note that the lowest eigenstate is numbered zero).

(a) Y=6.0 (b) v=9.0
No.87 E=s111.02 No.93 E=122.11

(©) y=12.0 (d)
No.95 E=130.45

FIG. 23. Quantum surface of section (Husimi representa-
tion) for eigenstates localized along the diagonal orbits with
n = 22 quanta excited along the orbit. The quantum surface
of section corresponds to the classical Poincaré section shown
in Fig. 4 (i.e., p2 = 0.0). The states shown are: v = 6.0, state
87; v = 9.0, state 93; v = 12.0, state 95; and v = 15.0, state
96 (note that the lowest eigenstate is numbered zero). The lo-
cation of stable (o) and unstable (x) classical periodic orbits
resulting from bifurcation of the diagonal orbits are shown.

v=15.0
No.97 E=136.94
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v=12.0
No.96 E=130.51

FIG. 24. Quantum surface of section for state 96, which is
the other state involved in the avoided crossing with eigen-
state number 95 (cf. Figs. 22 and 23) at v = 12.0.

the quantum surface of section for the eigenstate along
the diabatic state at vy = 15.0. Because the most recently
born orbits are close to their parents in phase space it is
not possible to identify unambiguously their influence on
the eigenstate.

VII. CONCLUSIONS

In this paper we have investigated the semiclassical me-
chanics of the coupled quartic oscillator system described
by Hamiltonian (2.1). While the almost completely
chaotic ¢%¢2 potential (corresponding to the v — oo
limit) has received much attention, our focus has been
on the evolution of the density of states from the inte-
grable case (7 = 0) to the strongly coupled limit (a large
value v = 15.0).

For the integrable case, the Berry-Tabor analysis of the
semiclassical density of states in terms of rational (peri-

odic) tori [28] is appropriate. We extended this analysis
to deal with the contributions of resonances situated at
the boundaries of the physical action region. Such reso-
nances have an A dependence intermediate between that
for real rational tori and complex periodic tori [28]. It
was shown numerically that the magnitudes of the peaks
for the (1:0) and (0:1) resonant tori decrease more rapidly
with decreasing % than the magnitude of the (1:1) peak.

Computation of power spectra of the quantum density
of states for different values of the coupling parameter
revealed the evolution of the underlying classical periodic
orbit structure (cf. [1]), in particular, orbit bifurcations
and inverse bifurcations. We were able to identify the
influence of several resonant, symmetric isochronous, and
tangent bifurcations on the quantum density of states,
although it was not possible to determine the parameters
appearing in the uniform semiclassical expressions for the
contributions to the density of states analytically, as in
our previous work [32].

Finally, we briefly discussed localization of eigenstates
in the vicinity of the shortest periodic orbits and the
manifestations of bifurcations in sequences of eigenstates
located along diabatics. A discussion of smoothed states
and wave-packet spectra for the present system will be
given in a subsequent paper.
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